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THE PRIME FACTORS OF WENDT'S 
BINOMIAL CIRCULANT DETERMINANT 

GREG FEE AND ANDREW GRANVILLE 

ABSTRACT. Wendt's binomial circulant determinant, Wm. is the determinant of 
an m by m circulant matrix of integers, with (i, j)th entry (lim i) whenever 
2 divides m but 3 does not. We explain how we found the prime factors of 
Wm for each even m < 200 by implementing a new method for computations 
in algebraic number fields that uses only modular arithmetic. As a consequence 
we prove that if p and q = mp + 1 are odd primes, 3 does not divide m, and 
m < 200, then the first case of Fermat's Last Theorem is true for exponent p. 

1. INTRODUCTION 

For a given positive even integer m, define Wm to be the determinant of 
the m by m circulant matrix with top row (ao, a1, . . . , am_ 1), where 

m-l (X + l)m - Xm if 6 does not divide m, 

gm(X) E aiX' (X + l)m-Xm if 6 divides m. 
i=o I (X2+X+1) 

When 6 does not divide m, the (i, j)th entry is (jim and this matrix is 

given the name in the title. There are a variety of applications of Wm in 
number theory, in particular to Fermat's Last Theorem. In this paper we will 
explain how we computed the prime factors of Wm for each even m < 200, 
and as a consequence have the following result: 

Theorem. If p and q = mp + 1 are odd primes with m < 200, then the first 
case of Fermat's Last Theorem is true for exponent p if 6 does not divide m, 
and for exponent p2 if 6 does divide m . 

Previous results of this type have had the restriction that 6 does not divide m 
(which we remove as a consequence of [10]). Such a theorem has been proved 
for all m < I I 0 in [4J, and Wm has been computed as far as m = 50 in [6J. 

In [1], Boyd did an analytic investigation of the size of Wm and showed that 
if 6 does not divide m, then 

(1.1) 10l/3,m < w I < l0A/3{m, 
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where logA :=. 2 AfJ"3 log(2 cos 6) dO (a 0.323 .... (Alternatively, we can de- 
fine logA:= (3x/3/47)L(2, X), where L(s, X) is the Dirichlet L-function for 
the quadratic character X(.) of conductor 3.) 

2. OUR COMPUTATIONAL METHOD 

There are many ways to determine the value of W.. The most obvious is 
to simply compute the determinant of the matrix above; unfortunately, this is 
extremely costly for, say, m = 100. 

A beautiful theorem of Stern [17] states that the determinant of a circulant 
matrix with top row (bo, b1, ..., bm-I) is equal to the resultant of Xm - 1 

with the polynomial b(X) :EimT, b X . Thus, 

(2.1) Wm = 11 gm(4) 
cm1l 

and it is this formula that forms the basis for our computational method. Now 
gm(X) = H (1 + X - CX), where the product is over all mth roots of unity 4', 
except primitive cube roots of unity. Combining this with (2. 1), we see that the 
set of prime divisors of Wm is given by the set of prime divisors of 

(2.2) N(1 +4'"+ j) with< i, j < m- 1 and i:& m/3 or2m/3, 

where; := exp(2i7r/m) and N(.) is the norm taken over the field extension 
Q(4)IQ. We shall compute these norms. 

There are a few different ways to compute such norms in algebraic number 
fields. The first is to approximate the complex numbers (1 + C' + CJ) to many 
significant digits and then to multiply them together, being careful with rounding 
errors. As the product (that is, the norm) is an integer, we need only enough 
significant digits to ensure that we can determine which integer it is. This 
approach will be very costly for large m. 

A second approach is to treat complex numbers in Z[4] (- Z[X]/qm(X)) 
as polynomials in X, where we may replace X to any power (say p) greater 
than m, by XpIm. Thus, as we multiply together conjugates, we work with 
m-vectors of integers and so avoid rounding errors. However, the necessary 
vector manipulations now become quite costly when m is large. 

Our approach borrows the idea of 'single point evaluation' from the methods 
of symbolic computation [2], to compute these norms rather more efficiently. 
The main idea that we use is summed up by 

Proposition 1. Let N be the norm of 1 + 4' + Cj over Q(4) IQ. If t is a positive 
integer with INI < qm(t)/2 (where q$m(X) is the mth cyclotomic polynomial), 
then N is the least residue, in absolute value, of 

m 
(2.3) A J:= J (1 + tik + tjk) modulo Xm(t). 

k=1 
(k, m)= 1 
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Note that 
m 

(2.4) N(1 +C +C ) = H (1+c +C ). 
k=1 

(km)=I 

As 14] = 1, thus I, + Cik + ;1k1 < 3, and so INI < 3 (m); therefore, we can take 
t = 4 in Proposition 1. Actually one can usually take t = 2: 

Proposition 2. If a and 83 are primitive ath and bth roots of unity with a, , 
and a/3i$ 1, and m = [a, b] (= lcm[a, b]), then 

(2.5) INQ(C)IQ(1 + a + 8)1 < qm(2)/2 

except if 1 + a + 8l is a conjugate or multiple of one of 1 + C3 + C65 1 + 4 + 

C8, 1 + 45 + C105 1 + C4 + C65 1 + C7 + 4145 1 + C6 + 418' 1 + C6 + CO' where 
Cn = exp(2iir/n). 

Thus, to compute N, we had only to compute the product in (2.3) (with 
t = 2), in modular arithmetic, a relatively inexpensive task with a multi- or 
arbitrary precision package (we used 'C'): Not much is lost here (in terms of 
the number of digits) as we know that 'on average' (multiplicatively) our norms 
are exponential in (p(m) by (1.1). 

The method used here is applicable to a wide range of computations in al- 
gebraic number fields (as may be discerned from the proof of Proposition 1 
below); for instance, the same idea was used in [7] to compute the class num- 
bers of prime cyclotomic fields, for all primes up to 3000. 

In our computations we went up to m = 200, although we could have gone 
much further (the modulus in (2.3) has no more than 1 + [(p(m)log 2/log 10] < 
29 digits for m < 200). The difficulty in our method (or indeed any method), 
as m grows large, is the factorization of the norms: up to m = 200 we used 
Pollard's p - 1 algorithm [15] and Morrison and Brillhart's continued fraction 
algorithm [14], but for m = 1000, say, no known factoring algorithm would 
help! 

Proof of Proposition 1. By comparing the terms of the products in (2.3) and 
(2.4) we see that N A, modulo the ideal (t - C) of the ring Z[C]. However, 
N and A are both integers, by definition. Therefore, as t - C divides N - A (in 
Z[f]), thus each conjugate of t - C does, and so their product, qm(t), divides 
N-A. 

Now INI < Om(t)/2 and N _ A (mod Omq(t)), and so can only be the least 
residue, in absolute value, of A (mod Om (t)) . a 

3. SOME RESULTS AND HEURISTICS 

We present, in Table I, a sample of our computations. We give the number 
of primes dividing each Wm (other than the prime factors of m itself) and the 
largest of these primes. 
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TABLE 1 

Some statistics on the prime divisors of Wendt determinants 

Number of primes Largest prime 
m dividing Wm dividing Wm 

10 3 31 

20 4 61 

30 7 331 

40 11 61681 

50 17 6101 

60 17 4561 

80 32 4278255361 

100 40 8976001 

120 54 4562284561 

140 70 175480061 

150 86 1133836730401 

160 95 44479210368001 

180 114 183717901 

200 122 31211252919601 

The largest prime that we found was 618,970,019,642,690,137,449,562,111, 
which divides W178. All but a few small prime divisors are 1 (mod m), 
in each case, which is why Pollard's p - 1 algorithm was an extremely effective 
tool in factoring. 

When examining the statistics in Table I we noticed that there seem to be 
around 3m(m/q(m))log m prime divisors of Wm. the largest of which is ex- 
ponential in (f(m). We now give some rough heuristic arguments to support 
these observations. 

For each m, define Vm := Hl(l + C' + Cj) where 4 = exp(2i7r/m) and the 
product is over values of i and j with 0 < i, j < m - 1 and (i, j, m) = 1 . 
Clearly, Wm = H1dfm Vd, and so Vm = Hdfm J{Tu(m/d) for each m. By (1.1) 

we see that VM = AM2,PjM(jP2)+O(T(M)) ,where r(m) denotes the number of 
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divisors of m . We also note that Vm is the product of mrplm (1+ 1/p) norms. 
Now as each such norm is < 3"(m), and their multiplicative average is > A?(m), 

we see that some positive proportion of them is > ,A9(m)/2. Thus, if we admit 
that a randomly chosen integer n is prime with probability 1/log n, then we 
should expect 

1- {1i1 1 (m 2 > m 
pp ( (m) (P(m)J plm 

of these 'large' norms to be prime. 
Now Hardy and Ramanujan [11] showed that almost all integers n have 

{ 1 + o( 1) }log log n distinct prime factors. So, if we admit that our 'large' norms 
behave like randomly chosen integers, then we can deduce that their product 
has 

m rl (1 + 
1 

)log log(A,,(m)/2) m ( )lgm 

pim 

distinct prime factors (where the notation x y means that x = 0(y) and 
Y = O(x)). 

Both heuristics essentially support our observations. 

4. THE FIRST CASE OF FERMAT'S LAST THEOREM 

Fermat's Last Theorem is the following conjecture: For any integer n > 3, 
there do not exist nonzero integers x, y, z for which 

(4.1) n +Yn = Zn with gcd(x , y , z) = 1 c 

(4.1) is known to have no solutions for any n < 150, 000 [18]; and only finitely 
many solutions for any given n [5]. The first case of Fermat's Last Theorem 
for exponent n (FLTI)n is said to be true if gcd(n, xyz) > 1 in any integer 
solution of (4.1). (FLTI)n is known to be true for any n < 7.57 x 107 [3]. 

In 1823, Sophie Germain [13] showed that if (4.1) has solutions and q = 
mn + 1 is prime, where m _ 2 or 4 (mod 6), then either gcd(n, xyz) > 1 
or q divides (mm - l)Wm. Various authors have modified Sophie Germain's 
criteria and, most recently, the following result was given in [10] for prime 
power exponents in (4.1): 

Lemma 1. If p and q = mp + 1 are odd primes, q does not divide Wf , and 
p does not divide m, then the first case of Fermat's Last Theorem is true for 
exponent p if 6 t m, andfor exponent p2 if 61m. 

We computed the prime divisors of Wm for each even m < 200 and verified 
that, for all exponents p for which p divides m or q divides Wm. (FLTI)p 
is true (by using Wieferich's Theorem [20]-if p2 does not divide 2P - 2 then 
(FLTI)p is true). Thus, we obtained the theorem in ? 1. Notice that, in many 
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cases, this theorem provides an easily verified criterion to prove that the first 
case of Fermat's Last Theorem is true for exponent p. 

5. BOUNDING THE VALUES TAKEN BY CYCLOTOMIC POLYNOMIALS 

Define the power series 

tD(X) =- ( 1-Xn (n) 
n>1 

which is easily shown to converge absolutely for IXI < 1 . This power series can 
be seen to be related to any given cyclotomic polynomial from the well-known 
formula 

(5.1) q$ (X) = 17(Xd _ -)1(m/d) 
dim 

which may be rewritten as 

{ 
ji 

- 

(Xmlr)n)u(n)}( 

njr 

where r is the largest squarefree divisor of m. We shall prove 

Proposition 3. For any x > 2, 1 - 1/x and ?( 1/x) are, respectively, the in- 
fimum and supremum of the set of values taken by (Om (x)/x((m))u(m) with m 
squarefree and > 2. 

We can easily deduce 

Corollary 1. For any positive integer m and real number x, with m, IxI > 2, 

(5.2) 1loglqm(x)l - (o(m)logjxij < log(lxl/(Ixl - 1)). 
Proof of Proposition 3. We start by noting the inequality 

(5.3)G 
1 1 1 

d>n X 

which holds for any n > 1 and x > 2 (this is easily proved by taking logarithms 
of both sides and comparing terms). 

Let p and q be the smallest primes that do/do not divide m, respectively. 
Then, by (5.1) and (5.3), 

(0 m(X) 
U 
(m) -H -1 )8(d)> (1 - 1/x)G (x) 1 

X(P~m) dim1- 1/xp X 

Thus, 1 - l/x is a lower bound on our set of values; that it is the infimum 
comes from noting that if m = p is prime, then 

m(X 
U x() l _ 1a , 1 - 1 as p co. 

XP~m) 1 - 1/xp x 
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On the other hand, 

(?(x)/x (M))/1(M) J - A-8(d) 1-/Xq 

dtm X Gq(X) 

by (5.3). Thus, 1(l/x) is an upper bound; we see that it is the supremum by 
taking m to be the product of the first k primes, so that, by (5.3), 

(1m(X)/X P(m))(m) > G 1 1 q e1 
d1(1/x) -qi(X) 

> 
- 

as q '- oo (that is, as k -+ oc). a 

Proof of Corollary 1. By taking n = 1 in (5.3) we find that cIP(l/x) < 1 for 
any x > 2, and so (5.2) holds for x > 2 and m squarefree, by Proposition 
3. Now, if r is the largest squarefree divisor of m, then Om (x) = kr(xm/r) by 
(5.1), and so (5.2) follows for m from (5.2) for r. Finally, note that for any 
x, bm(X) = q2m(-X) for m odd and Om(x) = Om(-x) if m is divisible by 4 

by (5.1), so (5.2) for x < -2 follows from (5.2) for x > 2. 

Remark. The power series 

@(X)= I-X+X2 +X -X +2X _x8+X 

+ X11 + X13 + 2X16 _ 
17 

+ 2X18 + X20+ 

may well prove of further interest because of its close connection to cyclotomic 
polynomials. The growth of the coefficients of the cyclotomic polynomials has 
received much attention; we observe here that the coefficient of Xn in 4>(X) is 
bounded above by p(n), the number of partitions of n, as ?(X) is majorized 
by the power series Hfn>l (1 - Xn)1 . It would be interesting to obtain a better 
bound. 

6. BOUNDING THE SUM OF THREE ROOTS OF UNITY 

In this section we show how to obtain strong bounds on N( 1 + a + /), where 
N is the norm over the field extension Q (Cm)IQ, and prove Proposition 2. Pre- 

vious authors have considered improving the (trivial) bound N < 301(m) given 
in the introduction-the best bound to date is Krasner's N < 3m/4 for m- 2 
or 4 (mod 6), except in finitely many cases, which was obtained by considera- 
tion of circulants [ 12]. We shall improve Krasner's bound-for instance we will 
show that N < 3P(m)12 except when a ,, or a/I is a primitive 6th or 1Oth root 

of unity, and a finite number of other exceptional pairs (a, /5). These bounds 
may not be improved by too much-by (1.1) we see that a large number of such 
norms must be > (A - 8)"(m) as m --+ o0, and we can easily construct a few 

norms > 13(P(m)/2: If a is a primitive 6th root of unity and /5 a primitive 2 
bth root of unity with b 4 or 8 (mod 12), so that m = [a, b] = 3b, then 

IN(1 + a + /l)l = Om/2(3) which is > 131(m)/2 by Corollary 1. (Note that 

a m/2+1 = a and Am/2+1 = fl/,and (l+a+,+)(l+a/-f)=3a/- 2 . Thus, 
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N(1 + a + fi)2 = N(3 - Zif2) = '1m/2(3)2 , as fl,2 is a primitive (m/2)th root 
of unity.) 

Our starting point is a result of Ddnes [4, equation (10)]. 

Proposition 4. Suppose a, fi, and y = a-i are given primitive a, b, and cth 
roots of unity, respectively. Let mn = [a, b]. Then 

(6.1) IN(l + a + fl) i2/ (m) < 1a(-2)1 11(a) |-) c(-) 

Our derivation of (6.1) is rather different from that of Denes: We start from 
the identity 

(6.2) 12 + a1 212 +f 12l12 +2Y2 = I 1 - -121 _l 11 - 12 +911+a+ f4 

(This is easily proved by noting that the right-hand side of (6.2) is the difference 
of the two squares (3(1 + a + fl)( 1 + -a + fl))2 - ((1 - a)(1 - fl)(1 - 7)) 2, and 
the corresponding factors are (2 + zi)(2 + fl)(2 + y) and its conjugate.) 

We now exclude the first term of the right-hand side of (6.2) and take the 
norm (in Q(4Cm) IQ) of both sides, obtaining the inequality in (6.1). 

As an immediate consequence of Proposition 4 and Corollary 1 we can obtain 

Corollary 2. Let a, /J, y, a, b, c, and m be as in Proposition 4. For any fixed 
e > 0, if 1/1o(a) + 1/1p(b) + 1/1o(c) < log(l + 8)/log2, then 

IN(1 + a + 9)1 < (8(1 + 8)/3)() 

For instance, this holds if a, b, c > (4 log 2/e)2 and e < 2 

Taking 1 in Corollary 2 gives INI < 3 (m)12 except if at least one of 
a, b, and c is small. Now, rearrange a, fi, and y so that (0(a) < (p(b) < ((c) . 
Then, if INI > 3( m)/2, we see that 

2 1 1 > log(9/8) _ 1 

(p(b) - (0(b) p(c) - log 2 (p(a)' 

which can occur in only finitely many cases (as c is determined by a and b) 
unless the right-hand side is < 0. But then (0(a) < log2/log9 < 6, and so 
a = 1, 2, 3, 4, 5, 6, 8, 10, or 12, and we can use (6.1) to further eliminate 

values of a. 
In certain special cases we can improve somewhat on Corollary 2. For in- 

stance, we can show that for any e > 0, we have INI < ((V'S + 1)/2 + 8) (M) 

provided that a is sufficiently large and that there is a sufficiently large prime 
dividing m that does not divide a. 

A sketch of the proof of Proposition 2. We shall show that there are only finitely 
many possible values of a and b for which (2.5) fails; it thus requires a small 
amount of computation (for instance, by using Proposition 1 with t = 4) to 
verify the result (alternatively, one can use a lengthy case analysis; see [9] for 
details). 
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So suppose (2.5) fails, that is INI > 0m(2)/2. Let y = a!? be a primitive cth 
root of unity, and reorder a, fi, and y (taking their conjugates if necessary) 
so that 

(6.3) I(a2) 11p(a) > ko,(-2)11((b) > |_c(-2)1 l/p(c) 

(Note that N(l + af) = N(l + y) = N(l + + y).) Then, by Corollary 
1, Proposition 4, and (6.3), we have 

(2 (m) 
2)2/9(m) < (Om(2)/2)2/(P(m) 

< 3 1 0a (-2)1 11 a 
|10b (-2) 

I 1 /p (b) 
| 0c(-2)J1 1 /(c) 

(6.4) < 13 10a (-2)1 il,(a) 
10b(-2) 

1219(b) 

(' 13 1O (-2)1i/w(a)(29(b)+1)2/1(b)) 

(6.5) < 13 10a (-2)13f) < 1 (2f(a)13p 

Now a and b both divide m, so that l/q'(a) and l/((b) are both > l/v(m). 

Therefore, by (6.5), 

3 < 31( (a)+41(p(m) <271(p(a) 2 < t ? 

and so (0(a) < 7 log 2/log 3 
, which gives a finite number of possibilities for a. 

Then by (6.4), 

3/110a(-2) 11 /f(a) < 2 41/(m)+2/,p(b) < 2 61,p(b) 

and so, as IOa(-2)1 < 3 (a) for a > 1 (by Corollary 1), 

(p(b) < 6 log 2/ {log 3 - 87a 01a(-2)1 } 

which gives a finite number of possibilities for b. 5 
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